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Abstract
We have extended the double layer polarization theory of colloid particles to
polyelectrolyte solutions. The dielectric function consists of two parts, one
from the dipole around the polyelectrolyte, and the other from the polarization
charges at the boundary of the sample. The former has already been calculated
by theories in the literature, whereas the latter is evaluated here for the case
of rigid rods. The low frequency dispersion is mainly from the second part,
where a closed formula is obtained. Similarly to the charged sphere system,
the dispersion is non-Debye-like and the low frequency loss angle is π/4.

1. Introduction

In this work we calculate the complex dielectric function ε∗
eff(ω) of a dilute solution of

polyelectrolytes. The main focus here is the double layer polarization mechanism, which
plays a very important role in the low frequency dielectric response of a colloid suspension [1].
Formally, the effective conductivity and the complex dielectric function are defined by

〈i〉 = (Keff + iωε0ε
∗
eff(ω))〈E〉 (1)

where 〈i〉 is the space averaged current density, 〈E〉 the space averaged electric field, and ε0 the
vacuum dielectric constant. De Lacey and White [2] derived a general formula, which relates
the dielectric function of the suspension to the particle polarizability. The derivation is based
on electrokinetic equations in the bulk solution but is independent of the specific constitutive
relations near the surface of the suspension particle. In its dilute limit, the relation reads

〈i〉 = (K + iωεbε0)(1 + nα∗(ω))〈E〉 (2)

where K is the conductivity of the background electrolyte, εb its relative dielectric constant,
and n the number density of the particles. The single particle complex polarizability
α∗(ω) = α′(ω) + iα′′(ω) is defined by the asymptotic form of the potential around the particle
ψ(r, ω) = −E · r(1 − α∗(ω)/4πr3) as r → ∞.

From the above two expressions, one obtained the static dielectric increment

�ε = ε ′
eff(0)− εb = nεbα

′(0) + lim
ω→0

n
K

ε0ω
α′′(ω). (3)
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In the case of charge sphere suspension, the first term, denoted as�ε1 below, contributes much
less than the second term�ε2, and most of the analyses focus on the latter [1–3]. To interpret
the dielectric constant in terms of the induced dipole, rather surprisingly, the term�ε2 comes
from the polarization charges located at the boundary of the sample [4] rather than around the
sphere. The dipole close to the sphere clearly corresponds to the first term.

In the polyelectrolyte literature of charged rods, several models are available to calculate
the static induced dipole, i.e. the static polarizability α′(0) [5–9]. It is however not sufficient
to infer the dielectric increment from α′(0) alone, since α′(0) can only provide the first term
in equation (3). In this work we calculate the second contribution�ε2, which can be greater
than the first term for a strongly charged polyelectrolyte.

We consider the system with sufficient amount of salt added so that the double layer
is thin compared to the length L of the polyelectrolyte. The counterion and the coion are
assumed to have the same mobility µ and carry the univalent charge q and −q respectively.
The polyelectrolyte is assumed to be stationary and the flow effect is ignored. We hope that
the somewhat drastic simplification helps to provide a simple picture. The steady state electric
potential ψ and the salt perturbation C0(r) around an isolated polyelectrolyte are solved first.
The dielectric increment �ε2 is obtained by integrating the salt concentration perturbation
multiplied by the chemical potential perturbation [4]

�ε2 = 1

ε0 E2
0

2nkBT

C̄

∫
C2

0(r) dr (4)

where n is the number density of the polyelectrolyte chains, E0 the applied field strength, C̄
the averaged salt concentration in the bulk.

At finite frequencies, a similar approach is used [10] to calculate the complex dielectric
function related to �ε2. One solves the time-dependent concentration perturbation C(r, t) =
Re(C∗(r, ω)e−iωt ) which is driven by the oscillating field E0 cos(ωt). The complex dielectric
function �ε∗(ω) is obtained by replacing the integral in equation (4) by

∫
C0(r)C∗(r, ω) dr,

as shown in [10]. This expression has the simple explanation that, among the full free energy
stored at the zero frequency,part of it (

∫
C0C ′′ dr) is dissipated. The remaining part (

∫
C0C ′ dr)

is still stored at the finite frequency. Of course the first contribution also depends on the
frequency. However, its variation is weaker than the second contribution by the factorω/ωMW,
where the Maxwell–Wagner frequency ωMW = K/ε0εb is in the MHz range with added salt.
Below we will ignore the dispersion from the first term and only consider the dispersion coming
from the second term.

2. Governing equations

2.1. Equations in the bulk

Away from the polyelectrolyte, charge neutrality holds, and we can write

∇2ψ = 0. (5)

The neutral salt diffusion is simply

∂t C(r, t) = D∇2C(r, t). (6)

2.2. Boundary condition at the body of the polyelectrolyte chain

The salt concentration and the potential perturbation couple close to the double layer of the rod.
Consider a small controlled volume of cylindrical shape with radius ρ = ā, where cylindrical
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coordinates (ρ, θ, z) are used. The volume includes a segment of the rod and its double layer.
Following [7], the current balance reads

K 2π ā∇ρψ|ρ=ā + ks∇2
t (ψ + γC) = 0 (7)

where ∇t = t̂ · ∇ and t̂ is the local tangent vector along the rod. For convenience we define
γ ≡ kBT/qC̄ , which converts the unit of the concentration perturbation to the unit of the
electrical potential. The induced line charge density δλ can be approximated by the surface
integral [7]

2π ā∇ρψ|ρ=ā 	 −δλ/ε0εb. (8)

At equilibrium, the induced charge will vanish. The coion flux balance reads

∇ρ(ψ − γC)|ρ=ā = 0. (9)

Within the mean field level, the excess line conductance ks is defined as

ks = q2
∫ ā

ρ=a
µ(Ce

+ + Ce
− − 2C̄)2πρ dρ (10)

where a is the radius of the rod, and Ce
+, Ce− are the equilibrium ion concentrations for the

positive and negative ions respectively. It is difficult to calculate ks accurately. For a highly
charged polyelectrolyte like DNA, the condensed ions may have correlated motion. The
condensed ions may have much smaller mobility than the ions in the diffuse double layer.
For a highly charged polyelectrolyte well above the charge condensation threshold, we expect
that ks should at least contain the diffuse layer contribution; hence ks � µq2/ lB where lB

is the Bjerrum length. If the condensed ions are conducting with a mobility as high as the
ion mobility in the bulk, we will get ks ∼ µqλ where λ is the charge density (about e/1.7 Å
for DNA).

2.3. Chain ends

The two ends z = ±L/2 require different consideration. Consider a spherical controlled
volume with a radius of a few times ā, which includes one end as shown in figure 1. The
current balance condition consists of the current from the bulk and the excess current along
the polyelectrolyte chain.

K
∫

S
dA · ∇ψ ± ks t̂ · ∇(ψ + γC) 	 0 (11)

where the sign should be positive when t̂ points to the same side as the area element dA, and
negative otherwise. The surface integral

∫
S dA ·∇ψ can be approximated as the closed surface

integral, to become
∫

S
dA · ∇ψ 	 −Q/ε0εb. (12)

The coion flux balance condition at the ends reads∫
S

dA · ∇(ψ − γC) 	 0. (13)
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Figure 1. The controlled volume at the chain end. The shadow indicates the double layer region.

3. Rigid rod suspension

3.1. Dielectric increment

We are interested in the long chain limit. For a rod of length L, the current conducted in the
bulk has the resistor 1/K L around the volume L3, where K = 2q2µC̄ is the bulk conductance.
The current conducted along the rod has the resistor L/ks . The two resistors are comparable
at L∗ = √

ks/K . For a long rod (L � L∗), the potential is just slightly perturbed by the rod,
and we can treat ks/K L2 as a small perturbation parameter. Here we simply use ψ 	 −E0z
in the ∇tψ term in equations (7), (11) and ignore the term ∇t C . The difference is of the order
O(ks

2/K 2 L4). The end charges are

Q = ε0εb
ks

K
E0 + O(ks

2) (14)

at z = L/2, and −Q at the other end z = −L/2. The body charge density δλ ∝ ks
2 vanishes

at linear order in ks . The induced dipole is L Q = ε0εb E0ks L/K as calculated by Fixman [7]
for the long chain limit in his equation (II.24). The single particle static polarizability is simply
α′(0) = ks L/K . The static dipole alone will give a contribution to the static dielectric constant
as

�ε1 = 1

3
nεb

ks L

K
. (15)

We assume a random orientation distribution (and ignore the transverse polarizability), which
introduces the factor 1/3 during the ensemble average. The potential can be easily written out
as

ψ(r) = −r · E0 +
Q

4πε0εb

(
1

r+
− 1

r−

)
(16)

where r+ = |r − ẑL/2|, and r− = |r + ẑL/2|. The salt concentration perturbation is

C0(r) = γ
Q

4πε0εb

(
1

r+
− 1

r−

)
. (17)

Using equation (4), the second contribution to the dielectric constant is

�ε2 = 1

3
nεb

ks L

K

(
lBks

µq2

)
. (18)

A similar dielectric increment was first obtained by Dukhin and Shilov [3] but without providing
any details of the dispersion. The two contributions differ by a factor lBks/(µq2). For a
weakly charged polyelectrolyte, the factor can be small. For a polyelectrolyte which exceeds
the Manning threshold, if the condensed ions cannot move, the factor will be unity. If the
condensed ions also conduct,�ε2 can be greater than �ε1.
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Figure 2. The Cole–Cole plot. The high frequency dispersion from �ε1 is not shown.

3.2. Dispersion

At finite frequency E(t) = E0ẑ cosωt , we need the time-dependent salt concentration
perturbation C(r, t) = Re(C∗(r, ω)e−iωt ) to calculate the dispersion. Using the eigenfunction
expression in [10], the Fourier transformed C∗(k, ω) is

C∗(k, ω) = γ
k2

k2 − iω/D
C0(k) ∝ sin(kz L/2)

k2 − iω/D
. (19)

In real space this function reads

C∗(ω, r) = γ
Q

4πε0εb

(
e−√−iω/Dr+

r+
− e−√−iω/Dr−

r−

)
. (20)

The solution can be understood intuitively in that,at finite frequencies, the two charges oscillate
in time with the same maximal strength as the static dipole. Because of the coion flux balance
conditions close to the two ends, the two charges also act as time oscillating sources for the
salt. The oscillation frequency dictates the length and the phase of which the salt concentration
can penetrate; hence the exponential factors in equation (20). Performing the integration∫

C0(k)C(−k, ω) dk, the dielectric function is

ε∗
eff (ω) = εb +�ε1 +�ε2

2i

ω/ω0

(
e−√−iω/ω0 − 1 +

√−iω/ω0

)
(21)

where the characteristic rate is ω0 = D/L2. Similarly to the charged sphere system, the
dispersion is non-Debye-like and the low frequency loss angle is π/4. The dispersion is
shown in figure 2.

3.3. Short rod regime

When the rod is shorter than the characteristic length (L < L∗), the potential is controlled by
the conductivity along the rod rather than the electrolyte in the bulk. In such a case the previous
solution is not adequate. According to the steady state solution [7], the charge density at the
two ends is smoothly joined and is better approximated as a linear charge density distribution.
The second contribution now depends on the length as a higher power,�ε2 ∝ L5 [11], and the
first contribution is known to be�ε1 ∝ L3 [7]. Therefore we expect that in the case of a short
rod, the first contribution should be more important. The detailed dispersion will be studied
in our future work.

4. Discussion

For rods, the induced charges are at the two ends. We also calculate the dielectric function for
charged rings [11] which have no ends. We find that the dielectric increments of the rods and
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the rings have the same functional form. The dielectric increment result is more universal than
the present calculation suggested.

The present theory applies to long rigid rods that L > L∗. If we take ks 	 µq2/ lB and
C̄ = 0.01 M, we have L∗ 	 110 Å. However, chains longer than the persistent length have
coil conformations and require a different calculation. In the case of DNA the persistent length
lp 	 500 Å is not too large, so that the applicable range L∗ � L � lp is very small indeed.
Perhaps the theory will be more useful for a very rigid polyelectrolyte, for example a rod-like
virus.

For DNA with L = 500 Å, volume fraction φ = 0.05%, C̄ = 0.001 M, and ks 	 µq2/ lB,
we estimate�ε ∼ 10, which should still be well within the detection range. Most of the DNA
data in the literature (e.g. [12]) are for long DNA with a few million Dalton molecular weight.
It will be interesting to check the present theory with relatively short DNA with well controlled
molecular weight.
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